sábado, 26 de febrero de 2011

Condiciones de equilibrio: Introducción


Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio.
El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.


Ecuasiones de equilibrio Traslacional

Un cuerpo se encuentra en equilibrio traslacional si y sólo si la suma vectorial de las fuerzas que actúna sobre el es igual a 0.
Fx=Ax+Bx+Cx+Dx.......=0
Fy=Ay+By+Cy+Dy.......=0

Ejemplo el siguiente video explicará con mayor claridad el concepto:
video



Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:


A continuación se elabora su diagrama de cuerpo libre.

Ahora por medio de la descomposición de los vectores, calculamos la fuerza de cada uno de ellos.
F1x = - F1 cos 45°*
F1y = F1 sen 45°
F2x = F2 cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3 sen 90° = - 8 N*

Porque los cuadrantes en los que se localizan son negativos.

Como únicamente conocemos los valores de F
3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:

EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:
EFx=-F1 cos 45+F2=0
          F2=F1(0.7071)
E
Fy=-F1sen45-8N=0
          8N=F1(0.7071)
          F1=8N/0.7071=11.31 N

Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N

Condiciones de Equilibrio: Translacional

Un sistema se encuentra en equilibrio traslacional si y solo si:


Fx = 0
Fy = 0
Tipos de fuerzas que utiliza el equilibrio traslacional:
  • Fuerzas de tensión: La tensión es la fuerza que va por la cuerda en contrario al cuerpo, por ejemplo: si esta colgando entonces la tensión va hacia arriba, es como si estiras una cuerda de boongy, si la estiras mucho esta te atrae, AHÍ esta la fuerza de Tensión, ve que va al centro de la cuerda. En este caso no hay Fuerza normal, ya que solo se produce en cuerpos que están sobre una superficie, si están en el aire o colgados no hay Fuerza normal.
  • Fuerzas de compresión: El esfuerzo de compresión es la resultante de las tensiones o presiones que existe dentro de un sólido deformable o medio continuo, caracterizada porque tiende a una reducción de volumen o un acortamiento en determinada dirección y también, la fuerza de compresion es la contraria a la de traccion. intenta comprimir un objeto en el sentido de la fuerza.
  • Pesos: En física, el peso de un cuerpo se define como un vector que tiene magnitud y dirección, que apunta aproximadamente hacia el centro de la Tierra. El vector Peso es la fuerza con la cual un cuerpo actúa sobre un punto de apoyo, a causa de la atracción de este cuerpo por la fuerza de la gravedad.